
  

Graph Theory
Part Three



  

Agenda for Today

● The Pigeonhole Principle
● A simple yet surprisingly efective fact.

● Graph Theory Party Tricks
● Cool tricks to try at your next group

meeting.

● A Little Movie Puzzle
● Who watched what?



  

Recap from Last Time



  

Recap from Last Time

● When there’s an edge between two
nodes, we say they are adjacent.

● If there’s a path between two nodes, we
say they are reachable from one
another.
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Connected, Acyclic

Minimally Connected

(Connected, but deleting
any edge disconnects

its endpoints.)

$

If any of these
conditions hold,
then all of these
conditions hold.

A graph with any
of these properties

is called a tree.

If any of these
conditions hold,
then all of these
conditions hold.

A graph with any
of these properties

is called a tree.



  

New Stuf!



  

The Pigeonhole Principle



  

The Pigeonhole Principle

Theorem (The Pigeonhole Principle): 
If m objects are distributed into n bins
and m > n, then at least one bin will

contain at least two objects.
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The Pigeonhole Principle

Theorem (The Pigeonhole Principle): 
If m objects are distributed into n bins
and m > n, then at least one bin will

contain at least two objects.



  

m = 4, n = 3

Thanks to Amy Liu for this awesome drawing!



  

Some Simple Applications
● Any group of 367 people must have a

pair of people that share a birthday.
● 366 possible birthdays (pigeonholes).
● 367 people (pigeons).

● Two people in San Francisco have the
exact same number of hairs on their
head.
● Maximum number of hairs ever found on a

human head is no greater than 500,000.
● There are over 800,000 people in San

Francisco.



  

Theorem (The Pigeonhole Principle): If m 
objects are distributed into n bins and m > n, then at

least one bin will contain at least two objects.

Theorem (The Pigeonhole Principle): If m 
objects are distributed into n bins and m > n, then at

least one bin will contain at least two objects.

Let A and B be fnite sets (sets whose cardinalities are natural
numbers) and assume |A| > |B|. Which of the following

statements are true for all functions f : A → B?

(1) f is injective.
(2) f is not injective.
(3) f is surjective.
(4) f is not surjective.

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25



  

Proving the Pigeonhole Principle



  

Theorem: If m objects are distributed into n bins and m > n,
then there must be some bin that contains at least two objects.

Proof: Suppose for the sake of contradiction that, for some m and
n where m > n, there is a way to distribute m objects into n
bins such that each bin contains at most one object.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects
in bin i. There are m objects in total, so we know that

  m = x₁ + x₂ + … + xₙ.

Since each bin has at most one object in it, we know xᵢ ≤ 1 for each i.
This means that

  m = x₁ + x₂ + … + xₙ
≤ 1  +  1 + … + 1   (n times)
= n.

This means that m ≤ n, contradicting that m > n. We’ve reached a
contradiction, so our assumption must have been wrong. Therefore,
if m objects are distributed into n bins with m > n, some bin must
contain at least two objects. ■



  

Pigeonhole Principle Party Tricks



  



  



  



  

Hmm…. Is this a guarantee?

Let’s explore the idea mathematically!



  

Degrees

● The degree of a node v in a graph is the
number of nodes that v is adjacent to.

 

● Theorem: Every graph with at least two nodes
has at least two nodes with the same degree.
● Equivalently: at any party with at least two

people, there are at least two people with the
same number of friends at the party.
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are n possible
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Why can't both buckets be non-empty? 
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 1: Let G be a graph with n ≥ 2 nodes. There are n
possible choices for the degrees of nodes in G, namely,
0, 1, 2, …, and n – 1.

We claim that G cannot simultaneously have a node u of
degree 0 and a node v of degree n – 1: if there were such
nodes, then node u would be adjacent to no other nodes
and node v would be adjacent to all other nodes,
including u. (Note that u and v must be diferent nodes,
since v has degree at least 1 and u has degree 0.)

We therefore see that the possible options for degrees of
nodes in G are either drawn from 0, 1, …, n – 2 or from
1, 2, …, n – 1. In either case, there are n nodes and n – 1
possible degrees, so by the pigeonhole principle two
nodes in G must have the same degree. ■
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Theorem: In any graph with at least two nodes, there are
at least two nodes of the same degree.

Proof 2: Assume for the sake of contradiction that there
is a graph G with n ≥ 2 nodes where no two nodes
have the same degree. There are n possible choices
for the degrees of nodes in G, namely 0, 1, 2, …, n – 1,
so this means that G must have exactly one node of
each degree. However, this means that G has a node
of degree 0 and a node of degree n – 1. (These can't
be the same node, since n ≥ 2.) This frst node is
adjacent to no other nodes, but this second node is
adjacent to every other node, which is impossible.

We have reached a contradiction, so our assumption
must have been wrong. Thus if G is a graph with at
least two nodes, G must have at least two nodes of the
same degree. ■



  

The Generalized Pigeonhole Principle
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The Pigeonhole Principle
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● The generalized pigeonhole principle says
that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

A More General Version

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

⌈m/ₙ⌉ means “m/ₙ, rounded up.”
⌊m/ₙ⌋ means “m/ₙ, rounded down.”

  m = 11
   n = 5

⌈m / n⌉ = 3
⌊m / n⌋ = 2
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A More General Version
● The generalized pigeonhole principle says

that if you distribute m objects into n bins, then
● some bin will have at least ⌈m/ₙ⌉ objects in it, and
● some bin will have at most ⌊m/ₙ⌋ objects in it.

  m = 11
   n = 5

⌈m / n⌉ = 3
⌊m / n⌋ = 2

  

×11



  

m = 8, n = 3

Thanks to Amy Liu for this awesome drawing!



  

Theorem: If m objects are distributed into n > 0 bins, then some
bin will contain at least ⌈m/ₙ⌉ objects.

Proof: We will prove that if m objects are distributed into n bins, then
some bin contains at least m/ₙ objects. Since the number of objects in
each bin is an integer, this will prove that some bin must contain at
least ⌈m/ₙ⌉ objects.

To do this, we proceed by contradiction. Suppose that, for some m and
n, there is a way to distribute m objects into n bins such that each bin
contains fewer than m/ₙ objects.

Number the bins 1, 2, 3, …, n and let xᵢ denote the number of objects
in bin i. Since there are m objects in total, we know that

  m = x₁  +  x₂  + … + xₙ.

Since each bin contains fewer than m/ₙ objects, we see that
xᵢ < m/ₙ for each i. Therefore, we have that

  m = x₁  +  x₂  + … + xₙ
< m/ₙ + m/ₙ  + … + m/ₙ  (n times)
= m.

But this means that m < m, which is impossible. We have reached a
contradiction, so our initial assumption must have been wrong.
Therefore, if m objects are distributed into n bins, some bin must
contain at least ⌈m/ₙ⌉ objects. ■



  

An Application: Friends and Strangers



  

Friends and Strangers

● Suppose you have a party of six people. Each
pair of people are either friends (they know
each other) or strangers (they do not).

● Theorem (“Theorem on Friends and
Strangers”): Any such party must have a
group of three mutual friends (three people
who all know one another) or three mutual
strangers (three people, none of whom know
any of the others).



  



  



  



  



  



  



  

This graph is called K6, the
complete graph of order 6. 
More generally, the graph Kn 

consists of n mutually
adjacent nodes.
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This is a
monochrome (one-

color) copy of K₃.
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Friends and Strangers Restated

● From a graph-theoretic perspective, the
Theorem on Friends and Strangers can
be restated as follows:

Theorem: Color every edge of K₆ either
red or blue. The resulting graph always

contains a monochrome copy of K₃.
● How can we prove this result?



  



  



  



  



  



  



  

Observation: If we
pick any node in the
graph, that node will

have at least
⌈⁵/₂⌉ = 3 edges of the
same color incident

to it.

Observation: If we
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Theorem: Color each edge of K₆ red or blue. The resulting
graph contains a monochrome copy of K₃.

Proof: We need to show that the colored K₆ contains a red
copy of K₃ or a blue copy of K₃.

Pick some node x from K₆. It is incident to fve edges and
there are two possible colors for those edges. Therefore,
by the generalized pigeonhole principle, at least ⌈⁵/₂⌉ = 3
of those edges must be the same color. Without loss of
generality, assume those edges are blue.

Let r, s, and t be three of the nodes adjacent to node x 
along a blue edge. If any of the edges {r, s}, {r, t}, or
{s, t} are blue, then one of those edges plus the two edges
connecting back to node x form a blue K₃. Otherwise, all
three of those edges are red, and they form a red K₃.
Overall, this gives a red K₃ or a blue K₃, as required. ■



  

Ramsey Theory

● This proof is a special case of a broader family of
results called Ramsey theory.

● Theorem (Ramsey): For any natural number s, there
is a number R(s) such that

● for all n < R(s), there’s a way to color the edges of Kn red
and blue so there are no monochrome copies of Ks, and

● for all n ≥ R(s), every way of coloring the edges of Kn red
and blue always has a monochrome copy of Ks.

● Take Math 108 (combinatorics) to learn more!

● A more philosophical (and less literal) take on this
theorem: true disorder is impossible at a large scale,
since no matter how you organize things, you’re
guaranteed to fnd some interesting substructure.



  

The Game of Sim

● Here’s a game you can play with two players.
● One players plays as red, the other as blue.
● Begin with six disconnected points.
● Each turn, a player draws a line of their color.
● The frst to make a triangle of their color loses.

● The theorem we just proved means the game can’t
end in a draw: someone must win and someone
must lose.

● The strategy is more subtle than it looks. Try
playing this with a friend to see why!



  

Time-Out for Announcements!



  

Midterm

● The midterm is Tuesday 6pm-9pm.

● In Cemex!

● Covers lectures 0-5 and psets 1& 2

● Good luck!



  

Our Advice

● Do block out some dedicated time to work
through practice problems.

● Do get the TAs to review your answers to those
problems; ask privately on Ed.

● Do take some time this weekend to take a
walk, smell the rosemary bushes on campus,
and watch the bees buzz.

● Don’t pull an all-nighter studying for the exam.

● Don’t skip meals or alter your daily routine to
ft in time for studying.

● Don’t panic. You can do this!



  

Back to CS103!



  

A Little Math Puzzle



  

  “In a group of n > 0 people …
 

    · 90% of those people enjoyed CODA,
  · 80% of those people enjoyed Nomadland,
  · 70% of those people enjoyed Parasite, and
  · 60% of those people enjoyed Knives Out.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of CODA and Parasite?”

  “In a group of n > 0 people …
 

    · 90% of those people enjoyed CODA,
  · 80% of those people enjoyed Nomadland,
  · 70% of those people enjoyed Parasite, and
  · 60% of those people enjoyed Knives Out.

 

  No one enjoyed all four movies. How many people 
  enjoyed at least one of CODA and Parasite?”

(Adapted from here.)

https://math.stackexchange.com/questions/2874859/drinking-habits-riddle-the-village-is-90807060-300-saturat


  

Other Pigeonhole-Type Results



  

If m objects are distributed into n
boxes, then [condition] holds.



  

If m objects are distributed into n
boxes, then some box is loaded to at

least the average ᵐ/ₙ, and some box is
loaded to at most the average ᵐ/ₙ.



  

If m objects are distributed into n
boxes, then [condition] holds.



  



  



  



  



  



  

Theorem: If m objects are distributed into
n bins, then there is a bin containing more
than ᵐ/ₙ objects if and only if there is a bin

containing fewer than ᵐ/ₙ objects.



  

Lemma: If m objects are distributed into n bins and there are no bins
containing more than ᵐ/ₙ objects, then there are no bins containing
fewer than ᵐ/ₙ objects.

Proof: Assume for the sake of contradiction that m objects are distributed
into n bins such that no bin contains more than ᵐ/ₙ objects, yet some
bin has fewer than ᵐ/ₙ objects.

For simplicity, denote by xᵢ the number of objects in bin i. Without loss of
generality, assume that bin 1 has fewer than ᵐ/ₙ objects, meaning that x₁
< ᵐ/ₙ. Adding up the number of objects in each bin tells us that

           m =  x₁ + x₂ + x₃ + … + xₙ

    <  ᵐ/ₙ + x₂ + x₃ + … + xₙ

 ≤  ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + … + ᵐ/ₙ.

This third step follows because each remaining bin has at most ᵐ/ₙ 
objects. Grouping the n copies of the ᵐ/ₙ term here tells us that

          m <  ᵐ/ₙ + ᵐ/ₙ + ᵐ/ₙ + … + ᵐ/ₙ

        =  m.

But this means m < m, which is impossible. We’ve reached a
contradiction, so our assumption was wrong, so if m objects are
distributed into n bins and no bin has more than ᵐ/ₙ objects, no bin has
fewer than ᵐ/ₙ objects either. ■
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Theorem: In the scenario described here, all n people enjoyed at least
one of CODA and Parasite.

Proof: Suppose there is a group of n people meeting these criteria. We 
can model this problem by representing each person as a bin and
each time a person enjoys a movie as a ball. The number of balls is

.9n + .8n + .7n + .6n = 3n,

and since there are n people, there are n bins. Since no person liked
all four movies, no bin contains more than 3 = ³ⁿ/ₙ balls, so by our
earlier theorem we see that no bin contains fewer than three balls.
Therefore, each bin contains exactly three balls.

Now suppose for the sake of contradiction that someone didn’t enjoy
CODA and didn’t enjoy Parasite. This means they could enjoy at most
two of the four movies, contradicting that each person enjoys exactly
three.

We’ve reached a
contradiction, so our
assumption was
wrong and each
person enjoyed at
least one of CODA
and Parasite. ■
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Going Further

● The pigeonhole principle can be used to prove a ton of
amazing theorems. Here’s a sampler:

● There is always a way to fairly split rent among multiple
people, even if diferent people want diferent rooms.
(Sperner’s lemma)

● You and a friend can climb any mountain from two diferent
starting points so that the two of you maintain the same
altitude at each point in time. (Mountain-climbing theorem)

● If you model cofee in a cup as a collection of infnitely many
points and then stir the cofee, some point is always where it
initially started. (Brower’s fxed-point theorem)

● A complex process that doesn’t parallelize well must contain a
large serial subprocess. (Mirksy’s theorem)

● Any positive integer n has a nonzero multiple that can be
written purely using the digits 1 and 0. (Doesn’t have a name,
but still cool!)



  

More to Explore

● Interested in more about graphs and the
pigeonhole principle? Check out…

● … Math 107 (Graph Theory), a deep dive into graph
theory.

● … Math 108 (Combinatorics), which explores a
bunch of results pertaining to graphs and counting
things.

● … CS161 (Algorithms), which explores algorithms
for computing important properties of graphs.

● … CS224W (Deep Learning on Graphs), which uses
a mix of mathematical and statistical techniques to
explore graphs.

● Happy to chat about this in person if you’d like.



  

Next Time

● Mathematical Induction
● Reasoning about stepwise processes

● Applications of Induction
● To numbers
● To anticounterfeiting
● To modern art
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